
vim-noweb – extend Vim to support Noweb

Edward McGuire

March 23, 2024

Abstract

vim-noweb.nw is the source file for a Vim plugin that adds support for Noweb .nw
source file editing, such as syntax highlighting. Within .nw files, documentation chunks get
TEX syntax highlighting. Code chunks get the syntax highlighting of the code language,
if it can be identified. Otherwise they get a generic “String” highlighting.

New languages can be added easily by passing a language name, filename pattern, and
syntax file name to a registration function.

1

Copyright © 2023, 2024 Edward K. McGuire, Fort Worth, Texas. All rights reserved. Redis-
tribution and use of this software, with or without modification, is permitted, provided that
the following conditions are met:

1. Redistribution of this software must retain the copyright notice above, this list of conditions,
and the disclaimer below.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCY OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

2

Contents

1 Overview 4

2 Filetype detection 5

3 Syntax highlighting 6

3.1 Documentation chunk directive . 8

3.1.1 Test . 8

3.2 Quoted code in documentation . 9

3.2.1 Test . 9

3.3 Generic code-chunk declaration and body . 10

3.3.1 Test . 10

3.4 Language-specific code chunk declaration and body 11

3.4.1 Test . 12

3.5 Code use . 14

3.5.1 Test . 14

4 Compiling the developer manual, makefile, and sentinel file 15

5 Compiling the plugin package 16

6 Compiling the plugin website 18

7 Boilerplate 21

8 Roadmap 22

9 Notes on packagemaking 23

9.1 Source 1: Vim documentation . 23

3

1 Overview

The vim-noweb package is four files: a file type detection Vim script, a syntax highlighting
Vim script, a README, and a LICENSE, saved to a tarball. The package is compiled from the
source file vim-noweb.nw using Noweb and make. The finished product can be found at

4a ⟨ url 4a⟩≡ (16b 18c)
https://metaed.com/papers/vim-noweb/

The package development environment is Slackware64 Linux, release 15.0.
4b ⟨makefile 4b⟩≡ 5b ▷

⟨boilerplate 1 21a⟩
⟨boilerplate 2 21b⟩
⟨boilerplate 3 21c⟩
⟨boilerplate 4 21d⟩
usage ::

@echo ’makefile: usage:’
@echo ’ make all’
@echo ’ make install (implies all)’
@echo ’ make package (implies install)’
@echo ’ make website (implies package)’
@echo ’ make commit’
@echo ’ make clean’

all ::
install :: all
package :: install
website :: package
commit ::

git commit -av -uno
clean ::

rm -f *˜ .*˜
This code is written to file makefile.

4

2 Filetype detection

The filetype detection file ftdetect-noweb.vim identifies Noweb source files by the filename
suffix .nw. Its name in the bundle is ftdetect/noweb.vim.

5a ⟨ftdetect-noweb.vim 5a⟩≡ 5c ▷

" ⟨boilerplate 1 21a⟩
" ⟨boilerplate 2 21b⟩
" ⟨boilerplate 3 21c⟩
" ⟨boilerplate 4 21d⟩

This code is written to file ftdetect-noweb.vim.

5b ⟨makefile 4b⟩+≡ ◁ 4b 6b ▷

all :: ftdetect-noweb.vim
install :: ˜/.vim/ftdetect/noweb.vim
˜/.vim/ftdetect/noweb.vim : ftdetect-noweb.vim

mkdir -p ˜/.vim/ftdetect && cp $< $@
ftdetect-noweb.vim : vim-noweb.nw.sentinel ;
clean ::

rm -f ftdetect-noweb.vim

Detection is enabled by a single-line declaration that the filename pattern *.nw identifies a file
of type noweb.

5c ⟨ftdetect-noweb.vim 5a⟩+≡ ◁ 5a
autocmd BufNewFile,BufRead *.nw set filetype=noweb

5

3 Syntax highlighting

syntax-noweb.vim contains syntax highlighting directives for Noweb source files. Its name in
the bundle is syntax/noweb.vim.

6a ⟨syntax-noweb.vim 6a⟩≡ 6c ▷

" ⟨boilerplate 1 21a⟩
" ⟨boilerplate 2 21b⟩
" ⟨boilerplate 3 21c⟩
" ⟨boilerplate 4 21d⟩

This code is written to file syntax-noweb.vim.

6b ⟨makefile 4b⟩+≡ ◁ 5b 15a ▷

all :: syntax-noweb.vim
install :: ˜/.vim/syntax/noweb.vim
˜/.vim/syntax/noweb.vim : syntax-noweb.vim

mkdir -p ˜/.vim/syntax && cp $< $@
syntax-noweb.vim : vim-noweb.nw.sentinel ;
clean ::

rm -f syntax-noweb.vim

The stock TEX syntax file tex.vim is used to syntax-highlight everything outside code chunks.

NOTE: All regular expressions below use the Vim “very magic” syntax. This is
done by prefixing each expression with \v.

NOTE: According to syn-pattern in the manual, syntax patterns are always
interpreted like the magic option is set, no matter what the actual value of magic
is. Hence the “very magic” prefix is always an override of “magic”. I prefer “very
magic” for its readability, and for its similarity to Extended Regular Expressions.
Using “very magic”, there is no need to escape parentheses (grouping), vertical line
(alternation), or braces (repetition). But maybe “magic” would be easier for other
Vim programmers to read.

6c ⟨syntax-noweb.vim 6a⟩+≡ ◁ 6a 7a ▷

if exists("b:current_syntax") | finish | endif
syntax include @SyntaxTeX syntax/tex.vim
unlet b:current_syntax
syntax region Normal start=/\v%ˆ/ end=/\v%$/ contains=@SyntaxTeX

Defines:
SyntaxTex, never used.

6

Noweb syntax highlighting is declared as extensions to the TEX syntax.
7a ⟨syntax-noweb.vim 6a⟩+≡ ◁ 6c 7b ▷

⟨syntax-noweb.vim recognition 11a⟩
⟨syntax-noweb.vim doc chunk 8⟩
⟨syntax-noweb.vim quote 9⟩
⟨syntax-noweb.vim code chunk 10a⟩
⟨syntax-noweb.vim code use 14a⟩

The syntax file ends by setting the current syntax variable in buffer scope.
7b ⟨syntax-noweb.vim 6a⟩+≡ ◁ 7a

let b:current_syntax = "noweb"

The Noweb syntax is described partly in the manual, partly in the source. Some notable
quotations that were helpful in writing this syntax file:

• “A module name is any text enclosed in double angle brackets.”

• “Double angle brackets may be escaped in source by preceding them with the at sign.”

• “No other character, not even the at sign, needs to be escaped [in source].”

• “A module definition is a module name, followed by one equals sign, possibly followed
by white space, on a line by itself.”

“Test” subsections below are used to check highlighting. Install the plugin and then open the
file vim-noweb.nw in Vim.

7

3.1 Documentation chunk directive

A documentation chunk is introduced by a single at-sign. Indexing or plain documentation
can follow.

8 ⟨syntax-noweb.vim doc chunk 8⟩≡ (7a)
syntax match PreProc "\vˆ[@]($| [%]def .*|)" containedin=@SyntaxTeX

3.1.1 Test

plain documentation

8

3.2 Quoted code in documentation

Double square brackets bracket a code quotation within a documentation chunk. It can span
lines. It can contain code uses. It can contain nested quotes. A preceding at-sign (@) escapes
quoting. The language cannot be determined, so plain String highlighting is used.

9 ⟨syntax-noweb.vim quote 9⟩≡ (7a)
syntax region nowebCodeQuotation matchgroup=Operator

\ start="\v[@]@<!\[\["
\ end="\v\]\]"
\ containedin=@SyntaxTeX
\ contains=nowebCodeUse,nowebCodeQuotation

highlight link nowebCodeQuotation String
Defines:

nowebCodeQuotation, used in chunks 10a and 14a.
Uses nowebCodeUse 14a.

3.2.1 Test

CODE QUOTATION
CODE USE WITHIN CODE QUOTATION
⟨code use (never defined)⟩
[[NESTED CODE QUOTATION]]

9

3.3 Generic code-chunk declaration and body

A code chunk declaration is introduced by name in double angle brackets followed by equals-
sign and optional trailing whitespace. The name can contain code quotations. The code body
begins on the next line.

A code-chunk body is terminated by a new doc or code chunk introducer. It can span lines.
It can contain code uses.

Generic syntax is defined first so that specific syntaxes override it. Like code quotations, it is
given plain String highlighting.

10a ⟨syntax-noweb.vim code chunk 10a⟩≡ (7a) 11b ▷

syntax match nowebCodeChunkDecl "\vˆ[<][<].*[>][>][=][\t]*$"
\ skipnl
\ containedin=@SyntaxTeX
\ contains=nowebCodeQuotation
\ nextgroup=nowebCodeChunkBody

highlight link nowebCodeChunkDecl PreProc
syntax region nowebCodeChunkBody

\ start="\v.*"
\ end="\vˆ([@]($|))|([<][<].*[>][>][=][\t]*$)"me=s-1
\ contained
\ contains=nowebCodeUse

highlight link nowebCodeChunkBody String
Defines:

nowebCodeChunkBody, never used.
nowebCodeChunkDecl, never used.

Uses nowebCodeQuotation 9 and nowebCodeUse 14a.

3.3.1 Test

10b ⟨test generic syntax 10b⟩≡
This is a sample generic syntax code chunk.

10c ⟨test with code quotation generic syntax 10c⟩≡
This is a sample generic syntax code chunk.

10

3.4 Language-specific code chunk declaration and body

Credit for this technique goes to the developers of the Ant syntax file ant.vim distributed with
Vim.

11a ⟨syntax-noweb.vim recognition 11a⟩≡ (7a)
function NowebRecognize(language, pattern, file)

execute ’syntax match nowebCodeChunkDecl’ . a:language
\ . ’ "\vˆ[<][<]’ . a:pattern . ’[>][>][=]\s*$"’
\ . ’ skipnl’
\ . ’ containedin=@SyntaxTeX’
\ . ’ contains=nowebCodeQuotation’
\ . ’ nextgroup=nowebCodeChunkBody’ . a:language

execute ’highlight link nowebCodeChunkDecl’ . a:language . ’ PreProc’
execute ’syntax include @Syntax’ . a:language . ’ syntax/’ . a:file
execute ’unlet b:current_syntax’
execute ’syntax region nowebCodeChunkBody’ . a:language

\ . ’ keepend’
\ . ’ start="\v.*"’
\ . ’ end="\vˆ([@]($|))|([<][<].*[>][>][=][\t]*$)"me=s-1’
\ . ’ contained’
\ . ’ contains=nowebCodeUse,@Syntax’ . a:language

endfunction
Defines:

nowebRecognize, never used.
Uses nowebCodeUse 14a.

This is the list of languages currently set up to be recognized and syntax-highlighted using a
stock syntax file.

11b ⟨syntax-noweb.vim code chunk 10a⟩+≡ (7a) ◁ 10a 12a ▷

call NowebRecognize(’Awk’ , ’.*\.awk(|\s.*)’ , ’awk.vim’)
call NowebRecognize(’Bash’ , ’.*\.bash(|\s.*)’ , ’bash.vim’)
call NowebRecognize(’Crontab’ , ’.*\.crontab(|\s.*)’ , ’crontab.vim’)
call NowebRecognize(’Gnuplot’ , ’.*\.gp(|\s.*)’ , ’gnuplot.vim’)
call NowebRecognize(’Make’ , ’[mM]akefile(|\s.*)’ , ’make.vim’)
call NowebRecognize(’Man’ , ’.*\.[18](|\s.*)’ , ’man.vim’)
call NowebRecognize(’Python’ , ’.*\.py(|\s.*)’ , ’python.vim’)
call NowebRecognize(’Sed’ , ’.*\.sed(|\s.*)’ , ’sed.vim’)
call NowebRecognize(’Sh’ , ’.*\.sh(|\s.*)’ , ’sh.vim’)

11

Some stock syntaxes use the extend keyword when they define a region. It can cause their
syntax highlighting to leak out past the end of a code block, because it overrides the keepend
keyword. I have tested stock syntaxs that use extend to see if they leak. Those that do are
not enabled by default. The local system operator will have to enable them manually. The
following syntaxes are disabled for that reason:

12a ⟨syntax-noweb.vim code chunk 10a⟩+≡ (7a) ◁ 11b
" call NowebRecognize(’C’ , ’.*\.c(|\s.*)’ , ’c.vim’)
" call NowebRecognize(’Perl’ , ’.*\.pl(|\s.*)’ , ’perl.vim’)
" call NowebRecognize(’Vim’ , ’.*\.vim(|\s.*)’ , ’vim.vim’)

3.4.1 Test

12b ⟨makefile example 12b⟩≡
target :: dependency ; action

12c ⟨makefile with quoting example 12c⟩≡
target :: dependency ; action

12d ⟨not makefile counterexample 12d⟩≡
target :: dependency ; action

12e ⟨makefile.c counterexample 12e⟩≡
target :: dependency ; action

12f ⟨example .vim 12f⟩≡
unlet recognition

12g ⟨example .vim with quoting 12g⟩≡
unlet recognition

12h ⟨counterexample .vi 12h⟩≡
unlet recognition

12i ⟨example try.pl 12i⟩≡
use strict ;

12j ⟨example try.pl with quoting 12j⟩≡
use strict ;

12k ⟨counterexample try.pli 12k⟩≡
use strict ;

12

13a ⟨example try.c 13a⟩≡
main() { return ; }

13b ⟨example try.c with quoting 13b⟩≡
main() { return ; }

13c ⟨counterexample try.cpp 13c⟩≡
main() { return ; }

13d ⟨example try.sh 13d⟩≡
echo hello world

13e ⟨example try.sh with quoting 13e⟩≡
echo hello world

13f ⟨counterexample try.shm 13f⟩≡
echo hello world

13g ⟨example try.pl that demonstrates a leak out of the code block 13g⟩≡
/*

13h ⟨example try.c that demonstrates a leak out of the code block 13h⟩≡
/*

13i ⟨example try.py 13i⟩≡
This is a comment
import sys # This is a comment
hello_text = "hello, world"
def hello_function():

print(hello_text)
hello_function()
sys.exit(0)

"""
multiline string used as a comment
"""

"""
unterminated multiline string to test for leak out of the code block

13

3.5 Code use

Double angle brackets bracket a code use within a code chunk. It cannot span lines. When
used more than once on a line, the closest close-brackets end a code use. It can contain quotes.
A preceding at-sign (@) escapes a code use.

14a ⟨syntax-noweb.vim code use 14a⟩≡ (7a)
syntax match nowebCodeUse "\v[@]@<![<][<].{-}[>][>]"

\ contained
\ contains=nowebCodeQuotation

highlight link nowebCodeUse Identifier
Defines:

nowebCodeUse, used in chunks 9–11.
Uses nowebCodeQuotation 9.

3.5.1 Test

14b ⟨code use test inner block 14b⟩≡ (14c)
CODE TEST BODY

14c ⟨code use test outer block 14c⟩≡
123

⟨code use test inner block 14b⟩
456

14d ⟨code use test inner block 2 14d⟩≡ (14e)
CODE TEST BODY

14e ⟨code use test outer block 2 14e⟩≡
123⟨code use test inner block 2 14d⟩456

14

4 Compiling the developer manual, makefile, and sentinel
file

15a ⟨makefile 4b⟩+≡ ◁ 6b 15b ▷

all :: vim-noweb.pdf
vim-noweb.pdf : vim-noweb.tex

latexmk -pdf vim-noweb
clean ::

latexmk -C vim-noweb
vim-noweb.tex : vim-noweb.nw.sentinel ;
clean ::

rm -f vim-noweb.tex

15b ⟨makefile 4b⟩+≡ ◁ 15a 15c ▷

all :: makefile
makefile : vim-noweb.nw.sentinel ;
clean ::

rm -f makefile

15c ⟨makefile 4b⟩+≡ ◁ 15b 16a ▷

vim-noweb.nw.sentinel : vim-noweb.nw
noweb $<

15

5 Compiling the plugin package
16a ⟨makefile 4b⟩+≡ ◁ 15c 16c ▷

TMPDIR = /tmp
PKGDIR = noweb
PKG = $(TMPDIR)/$(PKGDIR)
package :: vim-noweb.tgz
vim-noweb.tgz : README LICENSE ftdetect-noweb.vim syntax-noweb.vim

rm -rf $(PKG)
mkdir -p $(PKG)/{ftdetect,syntax}
cp README LICENSE $(PKG)/
cp ftdetect-noweb.vim $(PKG)/ftdetect/noweb.vim
cp syntax-noweb.vim $(PKG)/syntax/noweb.vim
(cd $(TMPDIR) && tar cf - $(PKGDIR) | gzip -9) > $@

16b ⟨README 16b⟩≡
Vim plugin for Noweb (.nw) files

vim-noweb is a Vim plugin that adds support for Noweb source file editing, such
as syntax highlighting.

TeX syntax highlighting is applied to documentation chunks.

Syntax highlighting applied to code chunks is that of the code language, if it
can be identified.

More information and support:
⟨ url 4a⟩
https://www.reddit.com/r/LitProg/

This code is written to file README.

16c ⟨makefile 4b⟩+≡ ◁ 16a 17b ▷

README : vim-noweb.nw.sentinel ;
clean ::

rm -f README

16

17a ⟨LICENSE 17a⟩≡
Copyright © 2023, 2024 Edward K. McGuire, Fort Worth, Texas. All rights reserved.
Redistribution and use of this software, with or without modification, is
permitted, provided that the following conditions are met:

1. Redistribution of this software must retain the copyright notice above, this
list of conditions, and the disclaimer below.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR \AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCY OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

This code is written to file LICENSE.

17b ⟨makefile 4b⟩+≡ ◁ 16c 18b ▷

LICENSE : vim-noweb.nw.sentinel ;
clean ::

rm -f LICENSE

17

6 Compiling the plugin website
18a ⟨ html 18a⟩≡ (18b)

/var/www/metaed.com/root/papers/vim-noweb

18b ⟨makefile 4b⟩+≡ ◁ 17b
all :: header.html footer.html htaccess
header.html footer.html htaccess : vim-noweb.nw.sentinel ;
clean ::

rm -f header.html footer.html htaccess
website :: ⟨ html 18a⟩/header.html
website :: ⟨ html 18a⟩/footer.html
website :: ⟨ html 18a⟩/.htaccess
website :: ⟨ html 18a⟩/vim-noweb.pdf
website :: ⟨ html 18a⟩/vim-noweb.nw
website :: ⟨ html 18a⟩/vim-noweb.html
website :: ⟨ html 18a⟩/vim-noweb.tgz
⟨ html 18a⟩ : ; mkdir -p $@
⟨ html 18a⟩/header.html : ⟨ html 18a⟩ header.html ; cp header.html $@
⟨ html 18a⟩/footer.html : ⟨ html 18a⟩ footer.html ; cp footer.html $@
⟨ html 18a⟩/.htaccess : ⟨ html 18a⟩ htaccess ; cp htaccess $@
⟨ html 18a⟩/vim-noweb.pdf : ⟨ html 18a⟩ vim-noweb.pdf ; cp vim-noweb.pdf $@
⟨ html 18a⟩/vim-noweb.nw : ⟨ html 18a⟩ vim-noweb.nw ; cp vim-noweb.nw $@
⟨ html 18a⟩/vim-noweb.html : ⟨ html 18a⟩ vim-noweb.nw.html ; cp vim-noweb.nw.html $@
⟨ html 18a⟩/vim-noweb.tgz : ⟨ html 18a⟩ vim-noweb.tgz ; cp vim-noweb.tgz $@
vim-noweb.nw.html : vim-noweb.nw

vim -c ’set noundofile’ -c TOhtml -c wqa $<
clean ::

rm -f vim-noweb.nw.html

18c ⟨header.html 18c⟩≡
<!-- ⟨boilerplate 1 21a⟩ -->
<!-- ⟨boilerplate 2 21b⟩ -->
<!-- ⟨boilerplate 3 21c⟩ -->
<!-- ⟨boilerplate 4 21d⟩ -->
<h1> ⟨ url 4a⟩ </h1>
<p>
This is the home of <code>vim-noweb</code>, a Vim syntax highlighting plugin for
Noweb source files.

This code is written to file header.html.

18

19 ⟨footer.html 19⟩≡
<!-- ⟨boilerplate 1 21a⟩ -->
<!-- ⟨boilerplate 2 21b⟩ -->
<!-- ⟨boilerplate 3 21c⟩ -->
<!-- ⟨boilerplate 4 21d⟩ -->
<p>
Copyright © 2023, 2024 Edward K. McGuire, Fort Worth, Texas. All rights reserved.
Redistribution and use of this software, with or without modification, is
permitted, provided that the following conditions are met:
<p>
1. Redistribution of this software must retain the copyright notice above, this
list of conditions, and the disclaimer below.
<p>
THIS SOFTWARE IS PROVIDED BY THE AUTHOR \AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCY OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

This code is written to file footer.html.

19

20 ⟨htaccess 20⟩≡
This file is part of the vim-noweb package.
Copyright (c) 2023, 2024 Edward K. McGuire.
It was compiled from vim-noweb.nw using Norman Ramsey’s Noweb.
<IfModule autoindex_module>
Options +Indexes
HeaderName header
ReadmeName footer
IndexOptions FancyIndexing
IndexOptions +IgnoreClient
IndexOptions +VersionSort
IndexOptions +Charset=UTF-8
IndexOptions +NameWidth=* DescriptionWidth=*
Ignore hidden files. The syntax of IndexOptions filename patterns makes it
impossible to ignore two-character hidden files without also ignoring ..
(parent directory), so we ignore three-character hidden files and longer.
IndexIgnore .??*
IndexIgnore *˜
IndexIgnore header.html footer.html
AddDescription "Current technical paper (PDF)" vim-noweb.pdf
AddDescription "Current source (Noweb)" vim-noweb.nw
AddDescription "How source looks highlighted" vim-noweb.html
AddDescription "Current plugin (compressed tar)" vim-noweb.tgz
</IfModule>

This code is written to file htaccess.

20

7 Boilerplate

The comment lines below appear at the top of each text file in the distribution.
21a ⟨boilerplate 1 21a⟩≡ (4–6 18c 19)

This file is part of the vim-noweb package.

21b ⟨boilerplate 2 21b⟩≡ (4–6 18c 19)
Copyright (c) 2023, 2024 Edward K. McGuire.

21c ⟨boilerplate 3 21c⟩≡ (4–6 18c 19)
It was compiled from vim-noweb.nw using Norman Ramsey’s Noweb.

21d ⟨boilerplate 4 21d⟩≡ (4–6 18c 19)
Last commit $Date: Fri Oct 13 20:23:21 2023 +0000 $

21

8 Roadmap

It was suggested in a general way here https://news.ycombinator.com/item?id=35960743
that it would be useful for a LitProg syntax highlighter to easily gray out code chunks, or
documentation chunks. Consider for a future release.

While I’m at it, folding should be really easy and would make a great addition.

22

https://news.ycombinator.com/item?id=35960743

9 Notes on packagemaking

These are notes on how to distribute a Vim plugin as a package.

9.1 Source 1: Vim documentation
23 ⟨to clean up 23⟩≡

Vim Reference Manual, Chapter 26, "Repeating commands, Vim scripts and
debugging", section 6, "Creating Vim packages" and section 6, "Using Vim
packages".

Distribute as an archive, or distribute from a repository.
"An archive can be used by more users, but is harder to update to a new
version."
"A repository can usually be kept up-to-date easiy, but it requires a program
like ’git’ to be available."
"You can do both, github can automatically create an archive for a release."

Directory layout example

start/foobar/plugin/foo.vim " always loaded, defines commands
start/foobar/plugin/bar.vim " always loaded, defines commands
start/foobar/autoload/foo.vim " loaded when foo command used
start/foobar/doc/foo.txt " help for foo.vim
start/foobar/doc/tags " help tags
opt/fooextra/plugin/extra.vim " optional plugin, defines commands
opt/fooextra/autoload/extra.vim " loaded when extra command used
opt/fooextra/doc/extra.txt " help for extra.vim
opt/fooextra/doc/tags " help tags

This allows for the user to do: >
mkdir ˜/.vim/pack/myfoobar
cd ˜/.vim/pack/myfoobar
git clone https://github.com/you/foobar.git

Here "myfoobar" is a name that the user can choose, the only condition is that
it differs from other packages.

In your documentation you explain what the plugins do, and tell the user how
to load the optional plugin: >

:packadd! fooextra

23

You could add this packadd command in one of your plugins, to be executed when
the optional plugin is needed.

Run the ‘:helptags‘ command to generate the doc/tags file. Including this
generated file in the package means that the user can drop the package in his
pack directory and the help command works right away. Don’t forget to re-run
the command after changing the plugin help: >

:helptags path/start/foobar/doc
:helptags path/opt/fooextra/doc

Vim startup supports packages, which are collections of plugins.
It looks for the "pack" directory in all the places in "packpath". It
scans "pack/*/start" for plugins. And, Vim also supports optional plugins found
in "pack/*/opt".
pack/ where to find packages
pack/a
pack/b
pack/c named by local operator, these are installed packages
pack/a/start Vim finds this at startup and scans it for plugins
pack/b/start Vim finds this at startup and scans it for plugins
pack/c/start Vim finds this at startup and scans it for plugins

pack/x/opt is for manual loading -- :packadd pkgname will load the package from
pack/x/opt/pkgname

<https://dev.to/iggredible/how-to-use-vim-packages-3gil>
The user-part of the name is for the end-user to organize packages. Organization
can be anything from a monolith such as ".vim/pack/my", to an organization by
type of package
˜/.vim/pack/colors
˜/.vim/pack/syntax
˜/.vim/pack/objects
˜/.vim/pack/plugins

There are various package manager add-ons for Vim
pathogen
vundle
dein
vim-plug
vim-update-bundles
minpac

Matvey at vim_use at Google Groups points out the "user-part" can be thought

24

of as "manager-name" and be used to avoid conflicts between multiple plugin
managers. So
˜/.vim/pack/pathogen/*
˜/.vim/pack/vundle/*
˜/.vim/pack/dein/*
˜/.vim/pack/vim-plug/*
˜/.vim/pack/manual/*

Pathogen is not recommended even by the developer for new users. The startup
search for "start" folders, and the :packadd search for "opt" folders, replaces
Pathogen.

Vundle can install and update plugins. Its Plugin command takes a URI and
automatically integrates with GitHub and with vim-scripts.org. Examples from the
Vundle manual:
Plugins with a slash in the name are grabbed from GitHub.
"VundleVim/Vundle.vim" => https://github.com/VundleVim/Vundle.vim
Plugins without a slash are grabbed from vim-scripts
"ctrlp.vim" => https://github.com/vim-scripts/ctrlp.vim
This is (was) a mirror on Github of the vim-scripts site, called "vim-scraper".
Vundle is described by the mirror author as an "early package manager", along
with Vim Update Bundles, and obsolete because Vim scripts are now developed on
Github and installable straight from source.
"Mostly it was created because vimballs are super duper unfriendly to package
managers."
--- https://vim-scraper.github.io/
This does not however address auto-updating.

dein -- active development has stopped. Only bug fixes will be made.

vim-plug - works a lot like Vundle. Has a "Plug" command that can grab a plugin
from Github or really any URL. Last updated very recently.

vim-update-bundles - end of life.

minpac - updates, but only supports Github URLs (and short form account/repo).
From its readme:
Similar projects
There are some other plugin managers built on top of the Vim 8’s packages feature.
vim-packager: written in Vim script
pack: written in Rust
infect: written in Ruby
vim-pck: written in Python
vim8-pack: written in Bash

25

volt: written in Go
autopac: modified version of minpac
plugpac.vim: thin wrapper of minpac, provides vim-plug like experience
minPlug: written in Vim script

Vim also distributes with a plugin called the "Vimball Archiver", "vimball.vim".
See :help vimball
Vimball supports installing and removing plugins that are packaged as
"vimballs", analogous to "tarballs".
It also has a MkVimball command which builds a Vimball .vba file.
There is external documentation on automating this process using make.
[[http://vim.wikia.com/wiki/Using_VimBall_with_%27Make%27]]

vim.org has a place to upload scripts and packages.
This collection does not seem to be supported by package managers.

Vim documentation includes a Getscript plugin that seems to get latest versions
of installed scripts.

26

	Overview
	Filetype detection
	Syntax highlighting
	Documentation chunk directive
	Test

	Quoted code in documentation
	Test

	Generic code-chunk declaration and body
	Test

	Language-specific code chunk declaration and body
	Test

	Code use
	Test

	Compiling the developer manual, makefile, and sentinel file
	Compiling the plugin package
	Compiling the plugin website
	Boilerplate
	Roadmap
	Notes on packagemaking
	Source 1: Vim documentation

